
Thus, the dependence of Nu on Re in transverse flow around the lateral surface of a 
cylinder is a broken line with straight-line segments when Re ~ 7"10a; this must be taken 
into account in designing thermoanemometric sensors. 

NOTATION 

Re, Nu, Reynolds and Nusselt numbers; Nu0, C, n, constants defined in the text. 
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EXCITATION OF THERMOACOUSTIC OSCILLATIONS IN A 

HEATED CHANNEL 

N. I. Antonyuk, V~ A. Gerliga, 
and V. I. Skalozubov 

UDC 532.5+536.2 

It is shown that one of the main causes of thermoacoustic oscillations in heated 
channels is associated with positive work done by bubbles in a sound wave. The 
sign of the work depends on the characteristics of the bubbles: their size, 
velocity, and heat and mass transfer with the surrounding liquid. 

Thermoacoustic oscillations [I-4] can arise in a heated channel in which the relatively 
cool surface boiling region occupies a significant fraction of the heated length of the 
channel. The amplitudes of these oscillations can reach values of the order of the average 
pressure in the channel in the case when the heated region is relatively short and the un- 
derheated, relatively cool region is significant. Thermoacoustic oscillations appear in 
the form of several different modes (usually three). 

Thermoacoustic oscillations can lead to undesirable phenomena: a disturbance of the 
operating conditions of the device, a lowering of the critical heat loads, and a prema- 
ture collapse of the channel as a result of fatigue heat loads. The excitation of thermo- 
acoustic oscillations in heated vapor-generating channels at subcritical pressures has been 
studied mainly experimentally [1-4], and not very extensively. A number of suggestions 
have been put forth on the mechanism of the excitation of thermoacoustic oscillations, how- 
ever all of them are mainly qualitative in nature. There is currently no rigorous quanti- 
tative treatment available describing the conditions for excitation of thermoacoustic oscil- 
lations in surface boiling. 

In the present paper we extend the approach developed in [2, 5]. In this approach the 
excitation of thermoacoustic oscillations depends on the work done by the bubbles in a sound 
wave over a period of oscillation. The work A done by the bubble over a period of oscilla- 
tion T in the acoustic pressure field is the intrinsic contribution of the bubble to the 
excitation of thermoacoustic oscillations. If A > 0, then over a period of oscillation the 
bubble does positive work on the surrounding liquid and this leads to a "build-up" of the 
oscillation. If A < 0 the bubble stabilizes the process. The perturbations of the pres- 
sure and volume of the bubble can be written in the form 

6P = apsin ~t, (1)  

6 V  = a v sin (~t + ~). ( 2 ) 
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Then the resulting work done by the bubble over a period T of the sound wave can be ob- 

tained using (I) and (2): 

r d6V 
A = .I. 6P dt dt : - -  ~apa v sin ~. (3 )  

o 

A c c o r d i n g  t o  [ 6 ] ,  t h e  q u a n t i t y  ~ in  (3 )  i s  a p h a s e - f r e q u e n c y  c h a r a c t e r i s t i c  o f  t h e  b u b b l e  
as a linearized nonlinear system responding to the acoustic field. The work A is positive 
if sin 8 < 0, i.e. 

- ~ < ~ < 0 .  (4) 

The condition (4) will be satisfied if the imaginary part of the amplitude-phase character- 
istic of the bubble is negative [6]: 

Im 6V_ (] (0)<0.  (5)  
6P 

F o r m a l l y  p u t t i n g  apa V = v - z ,  ap = 1, t h e  r e d u c e d  work i s  

~g 
A = - -  Im - ~ - -  (ira). (6 )  

Experiments [2, 8] in heated channels and also calculations show that thermoacoustic 
oscillations exist when the true volume vapor content near the channel outlet is ~ z 0.i- 
0.6. For such values of ~ the number of bubbles moving in the bulk of the flow is much 
larger than the number of bubbles near the walls of the channel. It follows from the cal- 
culations of [7] that the vapor content # "created" by the bubbles near the walls is usually 
less than 0.01-0.04. Therefore we can assume that most of the bubbles in the channel are 
moving in the bulk of the flow. We will assume that the contribution of the bubbles near 
the walls to the excitation of thermoacoustic oscillations is second order because of their 
small relative number. 

In order to use (6), we need information on the distribution of the bubble parameters 
(radius, slip velocity, interfacial interactions, and so on) with respect to length along 
the channel. 

The necessary distributions of the bubble parameters can be obtained by using the poly- 
dispersed nonequilibrium model of a two-phase fluid containing bubbles worked out in [7]. 
According to this model, each group of bubbles with the same conditions of nucleation and 
growth is described by a set of equations of the form 

F e q _ F ~ q _  V OP = 0 ,  (7 )  
az 

where 

'ao"v 5 Wb a~;":," (~vb, wL, . . . )&- ' ,  (8)  
Ot Oz - qLn 

CDSp c pLV(1 -- ~') [ OAW OWb 
f, ,  -- 2 AW IAW[; f,,~ --  2 L---O-I- + Wb -a,~z - -  

OWL q_ 1 A W  3V 1~ A W  OV, 
- r v o--7 + - 7 -  o z  ] " 

Expressions for CD(AW, #, R) and qLR(Wb, WL, AT u .... ) are given in [7, 9]. 

For oscillations about the unperturbed state of the system the relevant variables are 
written in the form [6] 

b (t) = b (t) q- 6b exp (]mt). ( 9 )  

Here ~(t) >> 6b. We will also assume that the velocity of the medium and the bubbles is 
much smaller than the speed of sound of the fluid. Then we can assume that [3b/St I >> 
IW(3b/3z){. Linearizing (7) and (8) and using (9), we obtain the following relation for the 
perturbation of the volume of the bubble: 

dSP (10) 
6~ = ~16~ + ~26~L + ~3 dz ' 

1324 



where ~i, ~2, ~3 are known functions of the parameters of the bubble Wb, V, qLR, S, and the 
transform parameter s = jm. Here the parameters Wb, V, qLR, S are functions of z' and z, 
where z' is the coordinate of the nucleation of the babble and z is the current coordinate 
of the bubble. We now use (i0) to find the transfer function (6). We first eliminate 6W L 
from (i0) using a simplified equation of motion of the mixture in the form 

OWmix OP 
Pmid Ot OZ (11) 

and put  W L ~ Wmix, PL = Pmix f o r  smal l  ~, We then  o b t a i n  (11) in terms of  t he  p e r t u r b a t i o n s  

6i-y/L = 1 dbP 
SD L dZ 

S u b s t i t u t i n g  (2) i n to  (10) ,  we have 

= ~ (z', z, s) 6P + [ ,~3 (z', z, s) - -  - 0!? 
, 

(12) 

~ ( z ' ,  z, s)] a6> ( 1 3 )  
SOL j dz 

It is known experimentally [2] that near the boundaries of the oscillation excitation region 
the distribution of the amplitude with length along the channel is nearly harmonic, i.e., 
we can write 

o r  

,' 2~,n ~ 
5P (z, t) - -  5> (t) sin I--H-- ",] (14) 

L--d- z,,, (15) 

where n = I, 2, 3 .... is the mode of oscillation. Using (15), we obtain from (I0) the am- 
plitude-frequency characteristic of the bubble as a function of the position of its nuclea- 
tion and its current position in the flow: 

817 ( 2 ~ n  i 
5fi -~ I I ( s )=~ l (z"  z, s) s i n ~ z / q -  

@ [F~s(z', z, . . . .  ,~2(z', z, s)] H cos[ / '  2~n ) H  z . (16) 

S u b s t i t u t i n g  (16) in to  (6 ) ,  we ob t a in  the  r e q u i r e d  e x p r e s s i o n  fo r  t he  work done by the  bub- 
b le  in the flow. Here ~z, !42, ~a depend on the position of nucleation and the position of 
the bubble in the flow, the history of the variation of the bubble parameters W b and V in 
the field of the variable flow parameters (TL, WL, P, and so on). As noted above, this in- 
formation can be obtained theoretically with the help of the model of [7]. Because the 
equations expressing the conservation laws for the bubbles are written in Eulerian coordi- 
nates, the degradation of a given bubble in the Lagrangian representation does not affect 
the final results. In any cross section z lying above the cross section where the bubble 
began to separate there exist bubbles with the appropriate parameters V(z', z), Wb(Z', z), 
and so on as a result of continuous "reproduction" of bubbles in nucleation cross sections 
z' Therefore the results obtained from (16) do not depend on the relation between the life- 
time of a bubble (in Lagrangian coordinates) and the period of oscillation of the sound 
wave. 

Figure i shows a set of graphs of the reduced work of the bubbles EAiN i in the bulk of 
i 

the flow as a function of length along the channel, where i corresponds to groups of bubbles 
having the same growth history and parameters in a given cross section of the flow. The 
starting points of the curves are the coordinates of the separation of the bubbles accord- 
ing to the model of [7]. The curves are numbered in order of increasing heat load q sup- 
plied to the channel for the same values of the other parameters of the flow [TL(Z = 0); 
P(z = 0); owl. In the calculations on which Fig. 1 is based, we used the data of our earlier 
experiments on the regions of stability of underheated boiling fluids [8]. According to the 
experiments, for the conditions of Fig. i, the heat load qlow at which thermoacoustic oscil- 
lations begin to occur and the value of the heat load qhigh at which the thermoacoustic 
oscillations cease when q is increased are qlow = 0.80 M~q]m 2 and qhigh = 0.92 MW/m 2. Curve 
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Fig. i. Work of the bubbles Ap = EAiNi/ 
i 

2 (aP)max, Pa -I as a function of length 
along the channel (pW = i000 kg'm -2- 
sec -I, Tu- = 423 K; P = 12.0 MPa): i) 
q = 0.78 ~W/m2; 2) q = qlow = 0.8 MW/m2; 
3) q = 0.82 MW/m2; 4) q > qhigh = 0.92 
M~/m 2 . 

1 corresponds to the stable case (q = 0.78 MW/m2). In this case the total work done by all 
bubbles in the channel is negative (the total area included between the curve and the z/H 
axis). As q increases, the negative part of the work increases more slowly than the posi- 
tive part. When q > qlow the total work is positive and thermoacoustic oscillations can 
arise and be maintained by the bubbles. Upon further increase of q (q > qhigh) the total 
work again becomes negative (curve 4). Therefore the behavior of the curves ZAiNi(z/H) 

I 

qualitatively determines the nature of the motion in the channel (stable or unstable 
against thermoacoustic oscillations). Similar results were obtained for the other experi- 
mental data in the region of the parameters studied in [8]: P i 16.0 MPa; oW = 500-2000 
kg/(m2"sec); q ~ 2.5 MW/m 2. It also follows from the calculations based on (6) and (16) 
that bubbles near the channel outlet stabilize the oscillation process. This is because of 
the decrease in AT U as well as the increase in the volume V of the bubbles. In the case of 
uniform heating of the entire channel the main contribution to destabilization comes from 
bubbles in the middle and in the third quarter of the channel. To study the effect of bub- 
ble size, in the final set of calculations (for the case of motion on the lower stability 
boundary) we assumed constant values of the bubble radius R. It follows from the calcula- 
tions that as the bubble radius is decreased and the other parameters are held constant, the 
"positive" part of the total work increases and the process is stabilized. Similar calcula- 
tions were carried out for fixed values of AT U and AW = W b - W L. It was found that an in- 
crease in AT U and AW also destabilizes the process. 

In the experiments basically only the first harmonic was excited. Therefore we put n = 
I in the calculations. Calculations with n = 2 and 3 showed that the contributions of these 
modes to the total work was small and decreased with increasing n. 

It follows that the excitation of thermoacoustic oscillations in two-phase fluids con- 
taining bubbles is determined mainly by the behavior of bubbles moving in the bulk of the 
flow due to the acoustic pressure field. The condition (4), which was obtained by consid- 
ering the work done by a bubble in the acoustic pressure field, is related to the well-known 
Rayleigh criterion [I0]: thermoacoustic oscillations are excited when the phase shift be- 
tween the pressure oscillations 6P = ap sin ~t and the oscillations of the mass supply 
(heat supply) per unit time 6G = a G sin(wt + 6) satisfies the condition 

(17) l~l < - -  
2 

We represent (16) in the form 

6V = U (]~) 67 = [Re~ (je) q- ] Im U (/~)18P. (18) 
Since p" << p' the change of the mass of vapor per unit volume per unit time as a re- 

sult of a conversion of liquid into vapor (or vice versa) can be ascribed to "external" 
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mass supply for a compressible two-phase medium. In this case the perturbation of the rate 
of mass supply of vapor per unit volume is approximately 

at \ dP VavSP -I-e8 , (19) 

where foe s i m p l i c i t y  Vav is  the average bubble volume in a un i t  volume with concent ra t ion  
Nav~ Then with the help of (18) and (19), we obtain 

6G pNa.v ImN(/~)q-i~Navll dp" ] ~ . - =  " I . - V q - p " R e ( ] ~ )  �9 (20) 
6 P  d P  

It follows from (20) that the phase shift between ~G and 6P will correspond to the 
condition (17) when Im H(j~) < 0. Hence the conditions for the excitation of thermoacoustic 
oscillations in two-phase fluids obtained from the Rayleigh criterion and from the work done 
by a bubble in the acoustic field are equivalent, for the assumptions considered above. 

Therefore a bubble moving in a two-phase fluid participates in the excitation of thermo- 
acoustic oscillations most strongly when the perturbation of the rate of change of the mass 
of vapor in the bubble and the perturbation of the pressure have the same phase (~ = 0). 

The mechanism of excitation of thermoacoustic oscillations can be summarized as fol- 
lows. In an acoustically isolated channel there exists noise, which can be represented as 
a sum of standing waves of different frequencies (modes). These standing pressure waves 
act on bubbles, resulting in a perturbation of the mass of vapor in them. If the perturba- 
tion of the mass of vapor is in phase with the perturbation of the pressure, then the bub- 
bles maintain and amplify the pressure oscillation. Suppose, for example, that a condensing 
bubble is located at an antinode of the pressure wave and moves without slipping. In this 
case as the pressure increases, the surface area of the bubble (i.e., its surface of conden- 
sation) decreases, which leads to an increase in the mass of vapor in the bubble in compari- 
son with the unperturbed state. This growth in the mass of vapor in the bubble causes a 
further increase in the pressure perturbation. When the pressure is decreased the opposite 
situation occurs: the mass of vapor in the bubble decreases in comparison with the unper- 
turbed state. Hence an increase (decrease) in the pressure in the sound wave leads to a 
change in the size of the bubble which promotes a further increase (decrease) in the per- 
turbation, i.e., the oscillation is amplified. 

This excitation mechanism of thermoacoustic oscillations is approximate, since in a 
real system there are other effects superimposed on this mechanism which complicate the pro- 
cess. For example, the gradient of the pressure perturbation acting on a bubble depends on 
its position. Hence the effect of the pressure perturbation on the parameters of the bub- 
ble and on the contribution of the bubble to the thermoacoustic oscillations will depend on 
the position of the bubble. 

Therefore the growth of thermoacoustic oscillations in two-phase fluids containing bub- 
bles depends on how the pressure perturbation from the sound wave affects the bubble parame- 
ters in each cross section of the channel. The perturbation of the bubble can either pro- 
mote the growth of the perturbation or hinder it. In the framework of our approach this 
coupling is taken into account by (16). 

NOTATION 

P, pressure; ~ = 2~T-Z; T, period of oscillation; t, time; V = 4~Ra/3, volume of a bub- 
ble; aD, av, positive real functions; 6, phase shift; Re, Im, real and imaginary parts; 

#=n tl tt j2 = Mv = PV; p ' PL, densities of vapor and liquid; r, latent heat of vaporization; 
T L, temperature of the liquid; C~, temperature of the vapor on the saturation line; %L, 
thermal conductivity of the liquid; ~, transfer function; eL, thermal diffusivity of the 
liquid; o, surface tension; ATu, underheating of the liquid; Ja, Jacobi number; qLR, spe- 
cific heat flux between the bubbles and the liquid; VL, kinematic viscosity of the liquid; 
Wb, WL, velocity of the bubbles and velocity of the liquid averaged over a cross section; 
S, surface area of a bubble; AW = W b - WL; s = j~; ~, true volume vapor content; H, height 
of the channel; N, number of bubbles per unit volume; q, specific external heat flux; pW, 
mass velocity. 
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THEORETICAL MODEL OF NONEQUILIBRIUM OF EXTRACTION 

OF A GAS DISSOLVED IN A FLUID DURING PRESSURE 

FLUCTUATIONS IN A FLOW 

A. N. Luk'yanov, E. N. Lysov, 
and V. I. Petrov 

UDC 532.542:532.529.5 

An engineering model and a method of computing nonequilibrium extraction of a 
gas dissolved in a fluid during pressure fluctuations in a dispersely-nucleate 
gas-liquid flow that differs from a known flow by taking account of the turbu- 
lent nature of the relative phase motion and a more accurate determination of 
the gas bubble radius in an equivalent flow. The results of computing the mag- 
nitude of the additional gas-extraction during pressure fluctuations in a pipe- 
line are compared with experimental data obtained earlier in water and carbon 
dioxide that verifies the reliability of the developed theoretical model. 

INTRODUCTION 

Low-frequency pressure fluctuations due either to vibration loaded hydraulic systems 
or to cavitation self-scillations in their elements occur in their hydraulic systems during 
the operation of the majority of power plants. 

As experimental investigations [i] showed, the pressure fluctuations in a gas-liquid 
flow cause additional gas extraction from the fluid with respect to the stationary case, 
that can result in a cavitation collapse of the supply pump operation. The reason causing 
additional gas extraction is the periodic change in the surface area of the phase separation 
in the flow. Under the action of pressure fluctuations on a gas-fluid flow the process of 
gas extraction alternates with the dissolution process. However, the mass transfer surface 
area will be greater during pressure diminution than during magnification. Consequently, 
more gas is extracted during one fluctuation period than is dissolved. 

A theoretical analysis of this phenomenon, called rectified gas diffusion, was first 
performed in the Harvard Acoustic Research Laboratory and its results are represented in 
[2, 3]. Later more modern theoretical models [4-6] were developed, however, they are all 
based on a spherically-symmetric formulation of the gas diffusion problem without taking ac- 
count of the relative motion of the gas bubbles and the fluid. At the same time a substan- 
tial relative motion of the gas and liquid phases occurs at the same time in power plant 
mainline supply systems, E. V. Vengerskii [7], who developed an engineering model and 
method during pressure fluctuations in a gas-liquid flow, performed a theoretical analysis 
of the rectified gas diffusion in this case. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 59, No. 4, pp. 655-659, October, 
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